RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2020 Volume 185, Pages 72–78 (Mi into703)

On the nature of local bifurcations of the Kuramoto–Sivashinsky equation in various domains

A. V. Sekatskaya

P.G. Demidov Yaroslavl State University

Abstract: We consider a nonlinear parabolic partial differential equation in the case where the unknown function depends on two spatial variables and time, which is a generalization of the well-known Kuramoto–Sivashinsky equation. We consider homogeneous Dirichlet boundary-value problems for this equation. We examine local bifurcations when spatially homogeneous equilibrium states change stability. We show that post-critical bifurcations are realized in the boundary-value problems considered. We obtain asymptotic formulas for solutions and examine the stability of spatially inhomogeneous solutions.

Keywords: Kuramoto–Sivashinsky equation, boundary-value problem, equilibrium state, stability, Galerkin method, computer analysis.

UDC: 517.956.4

MSC: 37L10, 37L25, 37L65

DOI: 10.36535/0233-6723-2020-185-72-78



© Steklov Math. Inst. of RAS, 2025