RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2020 Volume 185, Pages 132–136 (Mi into705)

On the duality in the theory of smooth manifolds

A. V. Ovchinnikovab

a Lomonosov Moscow State University
b All-Russian Institute for Scientific and Technical Information of Russian Academy of Sciences, Moscow

Abstract: In this paper, we discuss an important and nontrivial theorem on evaluation homomorphisms. We state this theorem as a canonical duality between the family of all smooth mappings $f\in \operatorname{Hom}(M,M')$ of a smooth real finite-dimensional manifold $M$ into a similar manifold $M'$ and the family of homomorphisms $\varphi$ of the algebra $C^{\infty}(M')$ of smooth scalar-valued functions on $M'$ into the analogous algebra $C^{\infty}(M)$ on $M$, $\varphi\in \operatorname{Hom}\big(C^{\infty}(M'),C^{\infty}(M)\big)$. This formulation possesses the maximum natural generality and, at the same time, allows it to be used in applications in the standard canonical form.

Keywords: smooth manifold, smooth function, homomorphism, duality.

UDC: 512.55, 514.76

MSC: 13C99, 53C15

DOI: 10.36535/0233-6723-2020-185-132-136



© Steklov Math. Inst. of RAS, 2025