RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2020 Volume 186, Pages 138–143 (Mi into724)

Structures of a parabolic problem with transformation of a spatial variable

Yu. A. Khazova, Yu. D. Likhogrud

Crimea Federal University, Simferopol

Abstract: A nonlinear parabolic equation with transformation of the spatial variable and periodic conditions on the circle is considered. Using the method of separation of variables, we obtain properties of eigenfunctions and eigenvalues of the corresponding linearized problem. Using the method of central manifolds, we prove the existence and stability of spatially inhomogeneous stationary solutions. Based on the Galerkin method, we analyze approximate solutions of the original problem.

Keywords: parabolic equation, method of central manifolds, stability, bifurcation, Galerkin method.

UDC: 517.957

MSC: 35K55

DOI: 10.36535/0233-6723-2020-186-138-143



© Steklov Math. Inst. of RAS, 2025