RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2020 Volume 187, Pages 119–128 (Mi into735)

Limit sets of differential equations near singular critical points

M. V. Shamolin

Lomonosov Moscow State University

Abstract: We suggest a method of the study of dynamical systems near singular critical points, i.e., points in whose neighborhoods the vector field of the system cannot be expanded into a series. We apply methods of the theory of multidimensional topographic Poincaré systems for the search of attracting regimes in the system.

Keywords: dynamical system, singular critical point, limit cycle.

UDC: 517.925

MSC: 34C07, 37G10

DOI: 10.36535/0233-6723-2020-187-119-128


 English version:
Journal of Mathematical Sciences (New York), 2025, 287:5, 804–813

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025