RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2021 Volume 190, Pages 81–87 (Mi into752)

Asymptotic solution of a singularly perturbed Cauchy problem in the presence of a rational “simple” turning point

A. G. Eliseev, T. A. Ratnikova

National Research University "Moscow Power Engineering Institute"

Abstract: In this paper, based on S. A. Lomov's regularization method, we construct an asymptotic solution of a singularly perturbed Cauchy problem in the case of violation of the stability conditions for the spectrum of the limit operator. In particular, we consider the problem with a “simple” turning point, i.e., where one eigenvalue vanishes for $t=0$ and has the form $t^{m/n}$ (the limit operator is discretely irreversible).

Keywords: singularly perturbed Cauchy problem, asymptotic solution, regularization method, turning point.

UDC: 517.968.22

MSC: 34E20

DOI: 10.36535/0233-6723-2021-190-81-87



© Steklov Math. Inst. of RAS, 2025