RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2021 Volume 193, Pages 17–24 (Mi into796)

An analog of the Jordan–Dirichlet theorem for an operator with involution on a graph

E. I. Biryukova

Voronezh State University

Abstract: In this paper, we examine the convergence of eigenfunction expansions of a functional-differential operator with involution $\nu(x)=1-x$, which is defined on a geometric graph consisting of two edges, one of which is a loop. Sufficient conditions are obtained for the uniform convergence of the Fourier series in the eigenfunctions of the operator (an analog of the Jordan–Dirichlet theorem).

Keywords: functional-differential operator, involution, geometric graph, Fourier series.

UDC: 517.984

MSC: 34L10, 34K08

DOI: 10.36535/0233-6723-2021-193-17-24



© Steklov Math. Inst. of RAS, 2025