RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2021 Volume 193, Pages 25–27 (Mi into797)

This article is cited in 1 paper

On an a priori majorant of the least eigenvalues of the Sturm–Liouville problem

A. A. Vladimirovab, E. S. Karulinac

a Dorodnitsyn Computing Centre of the Russian Academy of Sciences, Moscow
b Federal Research Center ‘Informatics and Control’ of Russian Academy of Science
c Plekhanov Russian State University of Economics, Moscow

Abstract: We examine the exact a priori majorant $M_\gamma\rightleftharpoons\sup\limits_{q\in A_\gamma}\lambda_0(q)$ of the least eigenvalue of the Sturm–Liouville problem $-y''+qy=\lambda y$, $y(0)=y(1)=0$, with a potential $q\in C[0,1]$ of the class $A_\gamma$ determined by the conditions $q\le 0$ and $\int\limits_0^1|q|^\gamma dx=1$, where $\gamma\in(0,1/2)$. For this majorant, we prove the strict estimate $M_\gamma<\pi^2$. The last estimate was known earlier in the case where $\gamma<1/3$.

Keywords: Sturm–Liouville problem, estimate of eigenvalues.

UDC: 517.927

MSC: 34L15, 34L40

DOI: 10.36535/0233-6723-2021-193-25-27



© Steklov Math. Inst. of RAS, 2025