RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2021 Volume 194, Pages 55–70 (Mi into816)

A boundary-value problem for a class of four-dimensional degenerate elliptic equations

A. S. Berdyshevab, A. Hasanovc, A. Ryskanab

a Kazakh National Pedagogical University
b Institute of Information and Computational Technologies, Ministry of Education and Science, Republic of Kazakhstan
c V. I. Romanovskiy Institute of Mathematcs of the Academy of Sciences of Uzbekistan

Abstract: The solvability of the problem with mixed Neumann–Dirichlet conditions for a degenerate four-dimensional elliptic equation are studied. The uniqueness of a solution to the problem is proved by the method based on the energy integral.

Keywords: degenerate four-dimensional elliptic equation, boundary-value problem with Neumann–Dirichlet conditions, Gellerstedt equation in four variables, fundamental solution, Lauricella and Gauss hypergeometric functions.

UDC: 517.956

MSC: 35J25, 35J70

DOI: 10.36535/0233-6723-2021-194-55-70



© Steklov Math. Inst. of RAS, 2024