RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2021 Volume 194, Pages 144–154 (Mi into823)

This article is cited in 2 papers

On two-point boundary-value problems for the Sturm–Liouville and Dirac operators

A. S. Makin

MIREA — Russian Technological University, Moscow

Abstract: The problems of completeness and basic property of systems of eigenfunctions and root functions are important questions of the spectral theory of non-self-adjoint differential operators with discrete spectra. In this paper, we give a brief survey of results on this topic for the Sturm–Liouville and Dirac operators with arbitrary two-point boundary conditions and arbitrary complex-valued summable potentials.

Keywords: Sturm–Liouville operator, Dirac operator, boundary-value problem, completeness, basis property.

UDC: 517.927.25, 517.984.62

MSC: 34L10, 34B24

DOI: 10.36535/0233-6723-2021-194-144-154



© Steklov Math. Inst. of RAS, 2025