RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2021 Volume 194, Pages 155–162 (Mi into824)

Local dynamics of a pair of Hutchinson equations with competitive and diffusion coupling

E. A. Marushkina, E. S. Samsonova

P.G. Demidov Yaroslavl State University

Abstract: In this paper, we study the dynamics of a system consisting of two coupled Hutchinson equations taking into account the competitive and diffusion coupling between populations. A local asymptotic analysis of the system is performed in the case where the coupling coefficients are small and the parameters of the oscillators are close to the values that provide the Andronov–Hopf bifurcation. We also examine the scenario of phase rearrangements of the system under a change in the diffusion parameter and analyze the dependence of this scenario on the coefficient of competition coupling.

Keywords: Hutchinson equation, competitive coupling, diffusion coupling, method of normal forms, asymptotics, stability.

UDC: 517.929

MSC: 37G05, 37G10, 37G15, 34K20

DOI: 10.36535/0233-6723-2021-194-155-162



© Steklov Math. Inst. of RAS, 2024