RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2021 Volume 195, Pages 10–24 (Mi into828)

Solvability of the system of integral equations of lattice models of statistical mechanics

Yu. P. Virchenko

National Research University "Belgorod State University"

Abstract: The paper is a review of results on the solvability of a system of integral equations, which is an analog of the Kirkwood–Salzburg equations for an infinite set of partial probability distributions of Gibbs random sets on $\mathbb{Z}^d$ corresponding to lattice gas models of equilibrium statistical mechanics with a pair interaction potential $U$. We study the relationship between the solvability of the system and the location of zeros of the partition functions $Q_\Lambda(z)$ of models.

Keywords: statistical mechanics, Gibbs distribution, lattice system, Kirkwood–Salzburg equations, partition function, thermodynamic limit.

UDC: 517.968.28

MSC: 82B20, 60K35, 46N55

DOI: 10.36535/0233-6723-2021-195-10-24



© Steklov Math. Inst. of RAS, 2024