RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2021 Volume 197, Pages 3–11 (Mi into855)

Weak continuity of skew-Hermitian operators in Banach ideals

B. R. Aminov, V. I. Chilin

National University of Uzbekistan named after Mirzo Ulugbek, Tashkent

Abstract: Let $\mathcal{H}$ be a separable complex Hilbert space, $\mathcal{B(H)}$ be the $C^{*}$-algebra of all bounded linear operators acting in $\mathcal{H}$, $\mathcal{I}$ be the perfect Banach ideal of compact operators in $\mathcal{B(H)}$, and $\mathcal{I}^h=\{{x\in\mathcal{I}}, \ {x=x^*}\}$. We prove that any skew-Hermitian operator $T:\mathcal{I}^h\to\mathcal{I}^h$ is continuous in the weak topology $\sigma(\mathcal{I},\mathcal{I}^{\times})$, where $\mathcal{I}^{\times}=\{x\in\mathcal{B(H)} \mid xy \in \mathcal{C}_1 \ \forall y \in \mathcal{I}\}$ is the associated Banach ideal for $\mathcal{I}$.

Keywords: Banach ideal of compact operators, weak topology, skew-Hermitian operator.

UDC: 517.98

MSC: 46L52, 47B10, 47C15

DOI: 10.36535/0233-6723-2021-197-3-11



© Steklov Math. Inst. of RAS, 2025