RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2021 Volume 198, Pages 68–75 (Mi into875)

Well-posedness and ill-posedness of boundary-value problems for one class of fourth-order differential equations of Sobolev type

A. I. Kozhanov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Abstract: This paper is devoted to the study of the well-posedness of boundary-value problems for Sobolev-type differential equations
\begin{equation*} \frac{\partial^2}{\partial t^2}(Au)+Bu+h(x,y,t)Cu=f(x,y,t), \end{equation*}
in which $x$ is a point from the bounded domain $\Omega$ of the space $\mathbb{R}^n_x$, $y$ is a point from the bounded domain $G$ of the space $\mathbb{R}^m_y$, $t$ is a point of the interval $(0,T)$, $A$ and $B$ are second-order elliptic operators acting on variables $x_1,\ldots,x_n$, $C$ is a second-order elliptic operator acting on $y_1,\ldots,y_m$, and $h(x,y,t)$ and $f(x,y,t)$ are given functions. For these equations, we study the well-posedness in the S. L. Sobolev spaces of the initial-boundary-value and Dirichlet problems.

Keywords: Sobolev-type equations, pseudohyperbolic equations, pseudoelliptic equations, initial-boundary value problem, Dirichlet problem, correctness.

UDC: 517.946

MSC: 35M20

DOI: 10.36535/0233-6723-2021-198-68-75



© Steklov Math. Inst. of RAS, 2024