RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2021 Volume 198, Pages 80–88 (Mi into877)

An analog of Bernstein's inequality for fractional $B$-derivatives of Schlemilch $j$-polynomials in weighted function classes

L. N. Lyakhovab, E. Saninaa

a Voronezh State University
b Lipetsk State Pedagogical University

Abstract: The $B$-derivative defined by generalized displacements coincides with the singular Bessel differential operator up to a constant. Similarly to the Riemann–Liouville, Marchot, and Weil fractional derivatives, we introduce fractional powers of the $B$-derivative and prove that these derivatives coincide on the corresponding functional classes. Also, we prove Bernstein's inequalities for the $B$-derivative and fractional $B$-derivative of even Schlemilch $j$-polynomials in the classes of continuous and Lebesgue-measurable functions.

Keywords: $j$-Bessel functions; generalized Poisson distribution; fractional derivatives of Liouville, Marchot, Weil; Riesz interpolation formula; Schlemilch polynomial; Stepanov space generated by a generalized shift; Bernstein–Zygmund inequality.

UDC: 517.9

MSC: 33C10, 41A05

DOI: 10.36535/0233-6723-2021-198-80-88



© Steklov Math. Inst. of RAS, 2025