RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2021 Volume 199, Pages 43–49 (Mi into888)

Fourier transform and continuity of functions of bounded $\Phi$-variation

B. I. Golubova, S. S. Volosivetsb

a Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
b N. G. Chernyshevsky Saratov State University, Faculty of Mathematics and Mechanics

Abstract: In this paper, we prove several criteria for the continuity of functions of bounded $\Phi$-variation that belong to the spaces $L^q$ on $\mathbb{R}$. The first result connects the continuity of a function with the behaviour of its Fourier transform, the second result is based on the notion of the modulus of continuity in $\Psi(L)$, and the third result concerns the degree of approximation by partial Fourier integrals. Theorems 1 and 3 in the case $\Phi(u)=|u|^p$, $1\le p<\infty$, were obtained earlier by the first author.

Keywords: function of bounded $\Phi$-variation, Fourier transform, continuity.

UDC: 517.518.24, 517.518.5

MSC: 42A38, 26A15, 26A45

DOI: 10.36535/0233-6723-2021-199-43-49



© Steklov Math. Inst. of RAS, 2025