RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2021 Volume 199, Pages 60–65 (Mi into890)

On the inversion of the Valiant function of the rank rigidity of a matrix

B. V. Konoplev

Saratov State University

Abstract: The rank function $\mathrm{rank}(A,k)$ of a matrix $A$ is the minimal rank of a matrix obtained from $A$ by changing no more than $k$ of its entries. For an arbitrary matrix, we obtain an upper boundary of $\mathrm{rank}(A,k)$. For rigid matrices, we establish a smooth lower boundary and a precise formula for $\mathrm{rank}(A,k)$. Alos, we show that the rank function of a rigid matrix inverses its regidity function. For rigid matrices, an interpretation of the inverse function of the rigidity function is given.

Keywords: rigidity function of a matrix, rigid matrix, rank function of a matrix, upper boundary, lower boundary, inverse function.

UDC: 517.51, 512.643

MSC: 26A06, 15A15

DOI: 10.36535/0233-6723-2021-199-60-65



© Steklov Math. Inst. of RAS, 2025