RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2021 Volume 200, Pages 87–94 (Mi into904)

An analog of the Jordan–Dirichlet theorem for an integral operator whose kernel has discontinuites on the diagonals

E. V. Nazarovaa, V. A. Khalovab

a The Russian Presidental Academy of National Economics and Public Administration, Moscow
b N. G. Chernyshevsky Saratov State University, Faculty of Mathematics and Mechanics

Abstract: In the paper, we examine an integral operator whose kernel has first-kind discontinuites at the lines $t=x$ and $t=1-x$. For this operator, we prove an analog of the Jordan–Dirichlet theorem on the convergence of eigenfunction expansion. The convergence is studied using the method based on integration of the resolvent by the spectral parameter.

Keywords: Jordan–Dirichlet theorem, resolvent, eigenfunction.

UDC: 517.984

MSC: 47G10, 45P05, 42A20

DOI: 10.36535/0233-6723-2021-200-87-94



© Steklov Math. Inst. of RAS, 2024