RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2021 Volume 201, Pages 103–106 (Mi into916)

This article is cited in 2 papers

Local $\tau$-density of the sum and the superextension of topological spaces

F. G. Mukhamadiev

National University of Uzbekistan named after M. Ulugbek, Tashkent

Abstract: In this paper, we study the density and the local density of the superextension of topological spaces. We prove that if $X_{\alpha}$ is a locally $\tau$-dense space for each $\alpha\in A$, then $X=\bigoplus \{X_{\alpha}: \alpha\in A\}$ is also a locally $\tau$-dense space. We also prove that for any infinite $T_{1}$-space, the inequality $ld(\lambda_{c}X)\le ld(X) $ is always valid.

Keywords: topological space, local density, separability, superextension, cardinal number.

UDC: 515.12, 515.17

MSC: 54B20, 54A25

DOI: 10.36535/0233-6723-2021-201-103-106



© Steklov Math. Inst. of RAS, 2025