RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2021 Volume 201, Pages 123–131 (Mi into918)

This article is cited in 1 paper

The problem of recovering a surface by the given external curvature and solutions of the Monge–Ampère equation

A. Artikbaeva, N. M. Ibodullaevab

a Tashkent Temir YO'L Muxandislari Instituti
b Navoi State Pedagogical Institute

Abstract: In this paper, we generalize the concept of the spherical mapping of a surface in Euclidean space. The normal mapping of a surface introduced by I. Ya. Bakelman is a special case of the generalized curvature. We prove general properties of the generalized curvature and special properties of the generalized curvature extended to a hyperbolic cylinder. Using these properties, we prove the existence and uniqueness of a solution of the Monge–Ampère equation in a multiply connected domain.

Keywords: spherical mapping, external curvature, normal mapping, generalized conditional curvature, hyperbolic cylinder, multiply connected domain.

UDC: 514.752.4, 517.956.2

MSC: 35R09, 45K05, 45J05

DOI: 10.36535/0233-6723-2021-201-123-131



© Steklov Math. Inst. of RAS, 2024