RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2022 Volume 204, Pages 74–84 (Mi into943)

On the averaging principle for semilinear fractional differential inclusions in a Banach space with a deviating argument and a small parameter

M. I. Kamenskiia, G. Petrosyanb

a Voronezh State University
b Voronezh State University of Engineering Technologies

Abstract: The this paper, we considers the Cauchy problem for a class of semilinear differential inclusions in a separable Banach space involving a fractional Caputo derivative of order $q\in(0,1)$, a small parameter, and a deviant argument. We assume that the linear part of the inclusion generates a $C_0$-semigroup. In the space of continuous functions, we construct a multivalued integral operator whose fixed points are solutions. An analysis of the dependence of this operator on a parameter allows one to establish an analog of the averaging principle. We apply methods of the theory of fractional analysis and the theory of topological degree for condensing set-valued mappings.

Keywords: Cauchy problem, differential inclusion, fractional derivative, small parameter, deviant argument, measure of noncompactness, condensing multioperator.

UDC: 517.929.7

MSC: 34Kxx, 47Hxx

DOI: 10.36535/0233-6723-2022-204-74-84



© Steklov Math. Inst. of RAS, 2025