RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2022 Volume 204, Pages 97–103 (Mi into945)

Theorems on iterations of partial integrals in a space with mixed norm

L. N. Lyakhovab, N. I. Trusovaa

a Lipetsk State Pedagogical University
b Voronezh State University

Abstract: In $\mathbb{R}_2$, we consider partial integrals acting on the first or second variable and obtain conditions for bounded action in spaces of continuous functions with respect to one of the variables with values in the Lebesgue class $L_p$ with respect to the other variable. We assume that these functions are defined in a finite rectangle $D\in\mathbb{R}_2$. We prove theorems on the boundedness of iterations of these partial integrals in the spaces of anisotropic functions $C(D_\alpha^{(1)}; L_p(D_{\overline{\alpha}}^{(1)}))$, where $\alpha$ and $\overline{\alpha}$ are indices complementing each other up to the double index $(1;2)$.

Keywords: partial integral, anisotropic function space, mixed norm.

UDC: 517.98

MSC: 45B99, 47G99

DOI: 10.36535/0233-6723-2022-204-97-103



© Steklov Math. Inst. of RAS, 2025