RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2022 Volume 204, Pages 104–114 (Mi into946)

Multi-step methods for the numerical solution of integro-algebraic equations with two singularities in the kernel

S. S. Orlov, O. S. Budnikova, M. N. Botoroeva

Irkutsk State University

Abstract: We consider a class of Volterra integro-algebraic equations with two integrable power singularities in the kernel and indicate fundamental difficulties in studying such equations. In terms of matrix pencils, we formulate sufficient conditions for the existence of a unique continuous solution. Also, we propose multi-step methods for solving such equations based on the method of integrating products and Adams quadrature formulas and present the results of numerical experiments.

Keywords: Volterra integro-algebraic equation; multi-step method; boundary singularity; diagonal singularity; rank-degree criterion.

UDC: 517.968

MSC: 45F15, 65R20

DOI: 10.36535/0233-6723-2022-204-104-114



© Steklov Math. Inst. of RAS, 2024