RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2022 Volume 205, Pages 55–94 (Mi into957)

This article is cited in 9 papers

Systems with four degrees of freedom with dissipation: analysis and integrability

M. V. Shamolin

Lomonosov Moscow State University

Abstract: This paper is a survey on integrable systems with four degrees of freedom whose phase spaces are tangent bundles of four-dimensional smooth manifolds. First, we discuss in detail the original problem from the dynamics of a multidimensional rigid body in a nonconservative force field; then we consider general dynamical systems on the tangent bundles of a sufficiently large class of smooth manifolds and prove sufficient conditions for the integrability of the dynamical systems considered in the class of transcendental.

Keywords: dynamical system, integrability, transcendental first integral.

UDC: 517, 531.01

MSC: 34Cxx, 70Cxx

DOI: 10.36535/0233-6723-2022-205-55-94



© Steklov Math. Inst. of RAS, 2025