RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2022 Volume 207, Pages 3–9 (Mi into973)

Boundary and outer boundary-value problems for the Poisson equation on noncompact Riemannian manifolds

K. A. Bliznyuk, E. A. Mazepa

Volgograd State University

Abstract: In this paper, we examine the existence of solutions of the Poisson equations on a noncompact Riemannian manifold $M$ without boundary. To describe the asymptotic behavior of a solution, we is introduce the notion of $\varphi$-equivalence on the set of continuous functions on a Riemannian manifold and establish a relationship between the solvability of boundary-value problems for the Poisson equations on the manifold $M$ and outside some compact subset $B\subset M$ with the same growth “at infinity.” Moreover, the notion of $\varphi$-equivalence of continuous functions on $M$ allows one to estimate the rate of asymptotic convergence of solutions of boundary-value and outer boundary-value problems to boundary data.

Keywords: boundary-value problem, Poisson equation, noncompact Riemannian manifold, asymptotic behavior.

UDC: 517.95

MSC: 31C12

DOI: 10.36535/0233-6723-2022-207-3-9



© Steklov Math. Inst. of RAS, 2024