RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2022 Volume 208, Pages 63–78 (Mi into995)

The Lagrange principle and the Pontryagin maximum principle in ill-posed optimal control problems

M. I. Suminab

a Tambov State University named after G.R. Derzhavin
b National Research Lobachevsky State University of Nizhny Novgorod

Abstract: We consider the regularization of the classical optimality conditions—the Lagrange principle and the Pontryagin maximum principle—in a convex optimal control problem for a parabolic equation with distributed and boundary controls, and also with a finite number functional equality constraints given by ‘`point’ functionals nondifferentiable in the Fréchet sense, which are the values of the solution of the third initial-boundary-value problem for the specified equation at preselected fixed (possibly boundary) points of the cylindrical domain of the independent variables.

Keywords: convex optimal control, parabolic equation, boundary control, Fréchet nondifferentiable functional, Steklov averaging, minimizing sequence, dual regularization, regularizing algorithm, Lagrange principle, Pontryagin maximum principle.

UDC: 517.9

MSC: 49K20, 49N15, 47A52

DOI: 10.36535/0233-6723-2022-208-63-78



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025