RUS  ENG
Full version
JOURNALS // Izvestiya of Saratov University. Mathematics. Mechanics. Informatics // Archive

Izv. Saratov Univ. Math. Mech. Inform., 2007 Volume 7, Issue 1, Pages 33–39 (Mi isu141)

Mathematics

Shape-preserving linear n-width of unit balls in $C[0,1]$

S. P. Sidorov

Saratov State University, Chair of Mathematical Economics

Abstract: Let $D^k$, $k$ is a natural number or zero, be the $k$-th differential operator, defined in $C^k(X)$, $X=[0,1]$, and let $C$ be a cone in $C^k(X)$. Let us denote $\delta_n^k(A,C)_{C(X)}:=\inf_{L_n(C)\subset C}\sup_{f\in A}\|D^kf-D^kL_nf\|_{C(X)}$ linear relative $n$-width of set $A\subset C^k(X)$ in $C(X)$ for $D^k$ with constraint $C$. In this paper we estimate linear relative $n$-width of some balls in $C(X)$ for $D^k$ with constraint $C=\{f\in C^k(X):D^kf\ge0\}$.

UDC: 517.518.85

DOI: 10.18500/1816-9791-2007-7-1-33-39



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025