RUS  ENG
Full version
JOURNALS // Izvestiya of Saratov University. Mathematics. Mechanics. Informatics // Archive

Izv. Saratov Univ. Math. Mech. Inform., 2010 Volume 10, Issue 2, Pages 10–19 (Mi isu16)

This article is cited in 4 papers

Mathematics

Asymptotic properties of polynomials $\hat p_n^{\alpha,\beta}(x)$, orthogonal on any sets in the ņase of integers $\alpha$, and $\beta$

A. A. Nurmagomedov

South Mathematical Institute of Vladikavkaz Science Center of the RAS, Mahachkala, Laboratory of the Theory of Functions and Approximations

Abstract: Asymptotic properties of polynomials $\hat p_n^{\alpha,\beta}(x)$, orthogonal with weight $(1-x_j)^\alpha(1+x_j)^\beta\Delta t_j$ on any finite set of $N$ points from segment $[-1,1]$ are investigated. Namely an asymptotic formula is proved in which asymptotic behaviour of these polynomials as $n$ tends to infinity together with $N$ is closely related to asymptotic behaviour of the Jacobi polynomials.

Key words: polynomial, ortogonal system, set, weight, weighted estimate, approximation formula.

UDC: 517.5

DOI: 10.18500/1816-9791-2010-10-2-10-19



© Steklov Math. Inst. of RAS, 2025