RUS  ENG
Full version
JOURNALS // Izvestiya of Saratov University. Mathematics. Mechanics. Informatics // Archive

Izv. Saratov Univ. Math. Mech. Inform., 2013 Volume 13, Issue 1(1), Pages 45–49 (Mi isu351)

This article is cited in 8 papers

Mathematics

Approximation of Smooth Functions in $L^{p(x)}_{2\pi}$ by Vallee-Poussin Means

I. I. Sharapudinov

Daghestan Scientific Centre of the Russian Academy of Sciences, Makhachkala

Abstract: Variable exponent $p(x)$ Lebesgue spaces $L^{p(x)}_{2\pi}$ is considered. For $f\in L^{p(x)}_{2\pi}$ Vallee–Poussin means $V_m^n(f,x)$ can be defined as $V_m^n(f,x)=\frac{1}{m+1}\sum\limits_{l=0}^mS_{n+l}(f,x),$ where $S_{k}(f,x)$ — partial Fourier sum of $f(x)$ of order $k$. Approximative properties of operators $V_m^n(f)=V_m^n(f,x)$ are investigated in $L^{p(x)}_{2\pi}$. Let $p(x)\ge1$ be $2\pi$-periodical variable exponent that satisfies Dini–Lipschitz condition. When $m=n-1$ and $m=n$ the following estimate is proved: $\|f-V_m^n(f)\|_{p(\cdot)}\le \frac{c_r(p)}{n^r}E_n(f^{(r)})_{p(\cdot)}$, where $E_n(f^{(r)})_{p(\cdot)}$ is the best approximation of function $f^{(r)}(x)$ by trigonometric polynomials of order $n$ in $L^{p(x)}_{2\pi}$.

Key words: variable exponent Lebesgue and Sobolev spaces, approximation by trigonometric polynomials, Vallee–Poussin means.

UDC: 517.587

DOI: 10.18500/1816-9791-2013-13-1-1-45-49



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024