RUS  ENG
Full version
JOURNALS // Izvestiya of Saratov University. Mathematics. Mechanics. Informatics // Archive

Izv. Saratov Univ. Math. Mech. Inform., 2013 Volume 13, Issue 1(2), Pages 104–108 (Mi isu386)

Mathematics

Finite Limit Series on Chebyshev Polynomials, Orthogonal on Uniform Nets

T. I. Sharapudinov

Daghestan Scientific Centre of the Russian Academy of Sciences, Makhachkala

Abstract: In the paper we construct new series, called finite limit series on Chebyshev (Hahn) polynomials $\tau^{\alpha,\beta}_n(x)=\tau^{\alpha,\beta}_n(x,N)$, orthogonal on uniform net $\{0,1,\ldots,N-1\}$. Their partial sums $S_n(f;x)$ equal in boundary points $x=0$ и $x=N-1$ with approximated function $f(x)$. Construction of finite limit series based on the passage to the limit with $\alpha\to-1$ of Fourier series $\sum\limits_{k=0}^{N-1}f_k^\alpha \tau_k^{\alpha,\alpha}(x,N)$ on Chebyshev (Hahn) polynomials $\tau_n^{\alpha,\alpha}(x,N)$, orthonormal on uniform net $\{0,1,\ldots,N-1\}$.

Key words: Fourier series, orthogonal polynomials.

UDC: 517.518.82

DOI: 10.18500/1816-9791-2013-13-1-2-104-108



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025