RUS  ENG
Full version
JOURNALS // Izvestiya of Saratov University. Mathematics. Mechanics. Informatics // Archive

Izv. Saratov Univ. Math. Mech. Inform., 2013 Volume 13, Issue 1(2), Pages 108–112 (Mi isu387)

This article is cited in 3 papers

Mathematics

Approximation Properties of Some Types of Linear Means in Space $L^{p(x)}_{2\pi}$

T. N. Shakh-Emirov

Daghestan Scientific Centre of the Russian Academy of Sciences, Makhachkala

Abstract: Approximative properties of Norlund $\mathcal{N}_{n}(f,x)$ and Riesz $\mathcal{R}_{n}(f,x)$ means for trigonometric Fourier series in Lebesgue space of variable exponent $L^{p(x)}_{2\pi}$ are considered. Under certain conditions on Norlund and Riesz summation methods it is proved that the estimates $\|f-\mathcal{N}_{n}\|_{p(\cdot)}\le CM\delta^{\alpha}$, $\|f-\mathcal{R}_{n}\|_{p(\cdot)}\le CM\delta^{\alpha}$ hold for $f\in \mathrm{Lip}_{p(\cdot)}(\alpha,M)$ ($0<\alpha\le1$).

Key words: Lebesgue and Sobolev spaces of variable exponent, module of continuity.

UDC: 517.518.8

DOI: 10.18500/1816-9791-2013-13-1-2-108-112



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025