RUS  ENG
Full version
JOURNALS // Izvestiya of Saratov University. Mathematics. Mechanics. Informatics // Archive

Izv. Saratov Univ. Math. Mech. Inform., 2014 Volume 14, Issue 3, Pages 295–304 (Mi isu513)

This article is cited in 2 papers

Mathematics

Approximation of Functions by Fourier–Haar Sums in Weighted Variable Lebesgue and Sobolev Spaces

M. G. Magomed-Kasumov

Daghestan Scientific Centre of Russian Academy of Sciences, 45, Gadgieva str., Makhachkala, Republic of Dagestan, 367000, Russia

Abstract: It is considered weighted variable Lebesgue $L^{p(x)}_w$ and Sobolev $W_{p(\cdot),w}$ spaces with conditions on exponent $p(x) \ge 1$ and weight $w(x)$ that provide Haar system to be a basis in $L^{p(x)}_w$. In such spaces there were obtained estimates of Fourier–Haar sums convergence speed. Estimates are given in terms of modulus of continuity $\Omega(f,\delta)_{p(\cdot),w}$, based on mean shift (Steklov's function).

Key words: weighted space, Lebesgue space, Sobolev space, variable exponent, modulus of continuity, Steklov's function, direct theorems of approximation theory, convergence speed, Fourier–Haar sums, Muckenhoupt condition.

UDC: 517.521

DOI: 10.18500/1816-9791-2014-14-3-295-304



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025