RUS  ENG
Full version
JOURNALS // Izvestiya of Saratov University. Mathematics. Mechanics. Informatics // Archive

Izv. Saratov Univ. Math. Mech. Inform., 2014 Volume 14, Issue 3, Pages 305–311 (Mi isu514)

This article is cited in 2 papers

Mathematics

Approximation of the Riemann–Liouville Integrals by Algebraic Polynomials on the Segment

A. A. Tyleneva

Saratov State University named after N. G. Chernyshevsky

Abstract: The direct approximation theorem by algebraic polynomials is proved for Riemann–Liouville integrals of order $r>0$. As a corollary, we obtain asymptotic equalities for $\varepsilon$-entropy of the image of a Hölder type class under Riemann–Liouville integration operator.

Key words: $p$-variation metric, $L^p$ space, Riemann–Liouville integral, best approximation, algebraic polynomials, $\varepsilon$-entropy.

UDC: 517.51

DOI: 10.18500/1816-9791-2014-14-3-305-311



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024