RUS  ENG
Full version
JOURNALS // Izvestiya of Saratov University. Mathematics. Mechanics. Informatics // Archive

Izv. Saratov Univ. Math. Mech. Inform., 2014 Volume 14, Issue 4(1), Pages 422–427 (Mi isu531)

This article is cited in 6 papers

Mathematics

On Uniform Boundedness of Some Families of Integral Convolution Operators in Weighted Variable Exponent Lebesgue Spaces

T. N. Shakh-Emirov

Daghestan Scientific Centre of Russian Academy of Sciences, 45, Gadgieva str., Makhachkala, Republic of Dagestan, 367000, Russia

Abstract: Let $k_\lambda(x)$ be a measurable essentially bounded $2\pi$-periodic function (kernel), where $\lambda\ge1$. Conditions on the weight and on the kernels $\{k_\lambda(x)\}_{\lambda\ge1}$ that provide the family of convolution operators $\{\mathcal{K}_\lambda f(x):\mathcal{K}_\lambda f(x)=\int_Ef(t)k_\lambda(t-x)\,dt\}_{\lambda\ge1}$ $(E=[-\pi,\pi])$ uniform boundedness in weighted variable exponent Lebesgue space $L^{p(x)}_{2\pi,w}$ are investigated.

Key words: Lebesgue spaces with variable exponent, convolution operators, Dini–Lipschitz condition.

UDC: 517.51

DOI: 10.18500/1816-9791-2014-14-4-422-427



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025