RUS  ENG
Full version
JOURNALS // Izvestiya of Saratov University. Mathematics. Mechanics. Informatics // Archive

Izv. Saratov Univ. Math. Mech. Inform., 2015 Volume 15, Issue 3, Pages 300–309 (Mi isu596)

This article is cited in 2 papers

Mathematics

Approximation of functions of bounded $p$-variation by Euler means

A. A. Tyuleneva

Saratov State University, 83, Astrakhanskaya st., 410012, Saratov, Russia

Abstract: In this paper we study the Euler means
$$e^q_n(f)(x)=\sum^n_{k=0}\binom{n}{k}q^{n-k}(1+q)^{-n}S_k(f)(x), \qquad q\geq 0, \qquad n\in\mathbb Z_+,$$
where $S_k(f)$ is the $k$-th partial trigonometric Fourier sum. For $p$-absolutely continuous functions ($f\in C_p$, $1<p<\infty$) we consider their approximation by the Euler means in uniform and $C_p$-metric in terms of moduli of continuity $\omega_k(f)_{C_p}$, $k\in\mathbb N$, and the best approximations by trigonometric polynomials $E_n(f)_{C_p}$. One can note the following inequality for different metrics from Theorem 2:
$$\|f-e^q_n(f)\|_\infty\leq C_1(1+q)^{-n} \sum_{j=0}^n\binom{n}{j} q^{n-j}E_j(f)_{C_p}, \quad n\in\mathbb N, $$
which is sharp. Also the following generalization of a result due to C. K. Chui and A. S. Holland is proved.
If $\omega$ is a modulus of continuity on $[0,\pi]$ such that $\delta\int^\pi_\delta t^{-2}\omega(t)\,dt=O(\omega(\delta))$, $1<p<\infty$ and $f\in C_p$ satisfies two properties 1) $\omega_2(f,t)_{C_p}\leq C\omega(t)$; 2) $\int_{2\pi/(n+1)}^\pi t^{-1}\|\varphi_x(t)-\varphi_x(t+2\pi/(n+1) \|_{C_p}\,dt=O(\omega(1/n))$, where $\varphi_x(t)=f(x+t)+f(x-t)-2f(x)$, then $\|e^1_n(f)-f\|_{C_p}\leq C\omega(1/n)$, $n\in\mathbb N$. Some applications to the approximation in Hölder type metrics are given.

Key words: functions of bounded $p$-variation, $p$-absolutely continuous functions, Euler means, best approximation, modulus of continuity.

UDC: 517.518

DOI: 10.18500/1816-9791-2015-15-3-300-309



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025