RUS  ENG
Full version
JOURNALS // Izvestiya of Saratov University. Mathematics. Mechanics. Informatics // Archive

Izv. Saratov Univ. Math. Mech. Inform., 2016 Volume 16, Issue 2, Pages 133–137 (Mi isu628)

This article is cited in 2 papers

Mathematics

Mazur spaces and 4.3-intersection property of $(BM)$-spaces

A. R. Alimov

Moscow State University, Vorob’evy gory, 119899, Moscow, Russia

Abstract: The paper puts forward some combinatorial and geometric properties of finite-dimensional $(BM)$-spaces. A remarkable property of such spaces is that in these spaces one succeeds in giving an answer to some long-standing problems of geometric approximation theory, and in particular, to the question on the existence of continuous $\varepsilon$-selections on suns (Kolmogorov sets) for all $\varepsilon>0$. A finite-dimensional polyhedral $(BM)$-space is shown to be a Mazur space, satisfies the 4.3-intersection property, and its unit ball is proved to be a generating set (in the sense of Polovinkin, Balashov, and Ivanov).

Key words: $(BM)$-space, 4.3-intersection property, Mazur space, Mazur set, zonotope, generating set.

UDC: 517.982.252+517.982.256

DOI: 10.18500/1816-9791-2016-16-2-133-137



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025