RUS  ENG
Full version
JOURNALS // Izvestiya of Saratov University. Mathematics. Mechanics. Informatics // Archive

Izv. Saratov Univ. Math. Mech. Inform., 2016 Volume 16, Issue 3, Pages 256–262 (Mi isu643)

This article is cited in 3 papers

Mathematics

Orthogonal shift systems in the field of $p$-adic numbers

A. M. Vodolazov, S. F. Lukomskii

Saratov State University, 83, Astrakhanskaya st., 410012, Saratov, Russia

Abstract: In 2010 S. Albeverio, S. Evdokimov and M. Skopina proved that if the shift system $(\varphi(x\dot-h))$ of a step function $\varphi$ is orthonormal and $\varphi$ generates $p$-adic MRA then its Fourier transform lies in the unit ball. We prove then in some cases the condition "$\varphi$ generates MRA" is possible to be omitted. In general, we indicate the number of linearly independent step-functions, which shifts form an orthonormal system.

Key words: orthogonal shift systems, field of $p$-adic numbers, $p$-adic MRA.

UDC: 517.51

DOI: 10.18500/1816-9791-2016-16-3-256-262



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025