RUS  ENG
Full version
JOURNALS // Izvestiya of Saratov University. Mathematics. Mechanics. Informatics // Archive

Izv. Saratov Univ. Math. Mech. Inform., 2018 Volume 18, Issue 2, Pages 196–205 (Mi isu755)

This article is cited in 3 papers

Scientific Part
Mathematics

Polynomials orthogonal with respect to Sobolev type inner product generated by Charlier polynomials

I. I. Sharapudinova, I. G. Guseinovba

a Dagestan Scientific Center of RAS, 45, M. Gadzhieva Str., Makhachkala, 367025, Russia
b Dagestan State University, 43-a, M. Gadzhieva Str., Makhachkala, 367000, Russia

Abstract: The problem of constructing of the Sobolev orthogonal polynomials $s_{r,n}^\alpha(x)$ generated by Charlier polynomials $s_n^\alpha(x)$ is considered. It is shown that the system of polynomials $s_{r,n}^\alpha(x)$ generated by Charlier polynomials is complete in the space $W^r_{l_\rho}$, consisted of the discrete functions, given on the grid $\Omega=\{0,1,\ldots\}$. $W^r_{l_\rho}$ is a Hilbert space with the inner product $\langle f,g \rangle$. An explicit formula in the form of $s_{r,k+r}^{\alpha}(x) = \sum\limits_{l=0}^{k} b_l^r x^{[l+r]} $, where $x^{[m]} = x(x-1)\ldots(x-m+1)$, is found. The connection between the polynomials $s_{r,n}^\alpha(x)$ and the classical Charlier polynomials $s_n^\alpha(x)$ in the form of $s_{r,k+r}^{\alpha}(x)= U_k^r \left[s_{k+r}^{\alpha}(x) - \sum\limits_{\nu=0}^{r-1} V_{k,\nu}^r x^{[\nu]}\right]$, where for the numbers $U_k^r$, $V_{k,\nu}^r$ we found the explicit expressions, is established.

Key words: Sobolev orthogonal polynomials, Charlier polynomials, Sobolev-type inner product.

UDC: 517.587

DOI: 10.18500/1816-9791-2018-18-2-196-205



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024