Abstract:
The article discusses a method for constructing a spline function to obtain estimates that are exact in order to approximate bounded functions by trigonometric polynomials in the Hausdorff metric. The introduction provides a brief history of approximation of continuous and bounded functions in the uniform metric and the Hausdorff metric. Section 1 contains the main definitions, necessary facts, and formulates the main result. An estimate for the indicated approximations is obtained from Jackson's inequality for uniform approximations. In section 2 auxiliary statements are proved. So, for an arbitrary $2\pi$-periodic bounded function, a spline function is constructed. Then, estimates are obtained for the best approximation, variation, and modulus of continuity of a given spline function. Section 3 contains evidence of the main results and final comments.
Key words:spline function, approximation by trigonometric polynomials, Hausdorff metric.