RUS  ENG
Full version
JOURNALS // Izvestiya of Saratov University. Mathematics. Mechanics. Informatics // Archive

Izv. Saratov Univ. Math. Mech. Inform., 2023 Volume 23, Issue 3, Pages 339–347 (Mi isu988)

This article is cited in 1 paper

Scientific Part
Mathematics

On functions of van der Waerden type

A. I. Rubinstein, D. S. Telyakovskii

National Research Nuclear University MEPhI, 31 Kashirskoe shosse, Moscow 115409, Russia

Abstract: Let $\omega(t)$ be an arbitrary modulus of continuity type function, such that $\omega(t)/t\to+\infty$, as $t\to+0$. We construct a continuous nowhere-differentiable function $V_\omega(x)$, $x\in[0;1]$, that satisfies the following conditions: 1) its modulus of continuity satisfies the estimate $O(\omega(t))$ as $t\to+0$; 2) for some positive $c$ at each point $x_0$ holds $\limsup{|V_\omega(x){-}V_\omega(x_0)|}\big/{\omega(|x{-}x_0|)}>c$ as $x\to x_0$; 3) at each point $x_0$ holds $\liminf{|V_\omega(x){-}V_\omega(x_0)|}\big/{\omega(|x{-}x_0|)}=0$ as $x\to x_0$.

Key words: modulus of continuity, nowhere-differentiable function, van der Waerden type function.

UDC: 517.518.153

Received: 26.04.2022
Accepted: 04.11.2022

DOI: 10.18500/1816-9791-2023-23-3-339-347



© Steklov Math. Inst. of RAS, 2025