RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2024 Number 9, Pages 16–21 (Mi ivm10011)

An oscillation inequality on a complex Hilbert space

S. Demir

Agri Ibrahim Cecen University, Ağrı, 04100 Turkey

Abstract: Let $T$ be a contraction on a complex Hilbert space $\mathcal{H}$, and for $f\in \mathcal{H}$ define
$$A_n(T)f=\frac{1}{n}\sum_{j=1}^nT^jf.$$
Let $(n_k)$ be an increasing sequence and $M$ be any sequence. We prove that there exists a positive constant $C$ such that
$$\left(\sum_{k=1}^\infty\sup_{\substack{n_k\leq m< n_{k+1}\\ m\in M}}\|A_m(T)f-A_{n_k}(T)f\|_{\mathcal{H}}^2\right)^{1/2}\leq C\|f\|_{\mathcal{H}}$$
for all $f\in \mathcal{H}$.

Keywords: Hilbert space, contraction, oscillation inequality.

UDC: 517

Received: 10.11.2023
Revised: 10.11.2023
Accepted: 26.12.2023

DOI: 10.26907/0021-3446-2024-9-16-21


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2024, 68:9, 13–17


© Steklov Math. Inst. of RAS, 2025