RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2024 Number 9, Pages 45–55 (Mi ivm10014)

Existence of an asymptotically almost periodic solution for a fractional semilinear problem

S. Maghsoodi, A. Neamaty

Mazandaran University, Babolsar, Iran

Abstract: In this research, we consider the fractional semilinear problem in a sequentially compact Banach space $X$: $x^{\alpha}(t)=A(t)x(t)+f(t,x(t))$, $t\in \mathbb R^{+} $, with the initial condition $x(0)=x_{0}$, $ x_{0} \in X $, where $A$ is the generator of an evolution system $({U(t,s)})_{t\leq s \leq {0}}$ and $f$ is a given function satisfying some assumptions. We study this fractional semilinear integro-differential equation and examine when it has an asymptotically almost periodic solution.

Keywords: asymptotically almost periodic solution, semilinear fractional problem, evolution system.

UDC: 517

Received: 22.06.2023
Revised: 16.04.2024
Accepted: 26.06.2024

DOI: 10.26907/0021-3446-2024-9-45-55


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2024, 68:9, 38–46


© Steklov Math. Inst. of RAS, 2025