RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2024 Number 9, Pages 92–99 (Mi ivm10018)

This article is cited in 1 paper

Brief communications

An analog of the Poincaré metric and isoperimetric constants

F. G. Avkhadiev

Kazan Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia

Abstract: For plane domains we define a new metric close to the Poincaré metric with the Gaussian curvature $k=-4$. For this quasi-hyperbolic metric we study inequalities of isoperimetric type. It is proved that the constant of the linear quasi-hyperbolic isoperimetric inequality for admissible subdomains of a given domain is finite if and only if the domain does not contain the point at infinity and has a uniformly perfect boundary. Also, we give estimates of these constants using some known numerical characteristics of domains.

Keywords: Poincaré metric, hyperbolic radius, isoperimetric inequality, uniformly perfect set.

UDC: 517.54: 517.9

Received: 19.05.2024
Revised: 10.06.2024
Accepted: 26.06.2024

DOI: 10.26907/0021-3446-2024-9-92-99


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2024, 68:9, 79–85


© Steklov Math. Inst. of RAS, 2025