RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2024 Number 9, Pages 92–99 (Mi ivm10018)

Brief communications

An analog of the Poincaré metric and isoperimetric constants

F. G. Avkhadiev

Kazan Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia

Abstract: For plane domains we define a new metric close to the Poincaré metric with the Gaussian curvature $k=-4$. For this quasi-hyperbolic metric we study inequalities of isoperimetric type. It is proved that the constant of the linear quasi-hyperbolic isoperimetric inequality for admissible subdomains of a given domain is finite if and only if the domain does not contain the point at infinity and has a uniformly perfect boundary. Also, we give estimates of these constants using some known numerical characteristics of domains.

Keywords: Poincaré metric, hyperbolic radius, isoperimetric inequality, uniformly perfect set.

UDC: 517.54: 517.9

Received: 19.05.2024
Revised: 10.06.2024
Accepted: 26.06.2024

DOI: 10.26907/0021-3446-2024-9-92-99



© Steklov Math. Inst. of RAS, 2024