RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2024 Number 10, Pages 77–89 (Mi ivm10027)

Expansions of eigenvalues of a discrete bilaplacian with two-dimensional perturbation

T. H. Rasulova, A. M. Khalkhuzhaevbc, M. A. Pardabaevd, Kh. G. Khayitovaa

a Bukhara State University, 11 M.Ikbol str., Bukhara, 200118, Republic of Uzbekistan
b V.I. Romanovsky Institute of Mathematics of the Academy of Sciences of Uzbekistan, 9 University str., Tashkent, 100174, Republic of Uzbekistan
c Samarkand State University after named Sharof Rashidov, 15 University blvrd., Samarkand, 140104 Republic of Uzbekistan
d Uzbek-Finnish Pedagogical Institute, 166 Spitamen str., Samarkand, 140104, Republic of Uzbekistan

Abstract: In this paper we consider the family of operators
$$ \widehat{\mathbf H}_\mu:=\widehat\varDelta\widehat\varDelta-\mu\widehat {\mathbf V}, \mu>0, $$
that is, a bilaplacian with a finite-dimensional perturbation on a one-dimensional lattice $ \mathbb{Z} $, where $ \widehat\varDelta $ is a discrete Laplacian, and $ \widehat {\mathbf V} $ is an operator of rank two. It is proved that for any $ \mu> 0 $ the discrete spectrum $ \widehat {\mathbf H}_\mu$ is two-element $ {e_{1}(\mu)}<0$ and ${e_{2}(\mu)}<0 $. We find convergent expansions of the eigenvalues ${e_{i}(\mu)}$, $i=1,2$ in a small neighborhood of zero for small $ \mu>0$.

Keywords: discrete bilaplacian, discrete Schrödinger operator, essential spectrum, eigenvalue, expansion, asymptotics.

UDC: 517.984

Received: 23.11.2023
Revised: 23.11.2023
Accepted: 26.12.2023

DOI: 10.26907/0021-3446-2024-10-77-89



© Steklov Math. Inst. of RAS, 2024