RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2024 Number 12, Pages 3–11 (Mi ivm10040)

On the infinite number of eigenvalues of the two-particle Schrödinger operator on a lattice

J. I. Abdullaeva, A. M. Khalkhuzhaevbca, Yu. S. Shotemirovd

a Samarkand State University named after Sharof Rashidov, 15 University blv., Samarkand, 140104 Republic of Uzbekistan
b V.I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, 81 M. Ulugbek Ave., Tashkent, 100170 Republic of Uzbekistan
c Bukhara State University, 11 M. Ikbol str., Bukhara, 200118 Republic of Uzbekistan
d Navoi State Pedagogical Institute, 45 Ibn Sino str., Navoi, 210100 Republic of Uzbekistan

Abstract: We consider the Schrödinger operator $H(\mathbf{k})=H_0(\mathbf{k})-V, \mathbf{k}\in \mathbb{T}^2,$ associated with a system of two particles on a two-dimensional lattice. It is shown that the subspaces of even as well as odd functions are invariant under operator $H(\mathbf{k}).$ The sets of quasimomenta $\mathcal{K}(1),$ $\mathcal{K}(2)$ and the class of potentials $\mathrm{P}(1),$ $\mathrm{P}(2)$ are described, for which the operator $H(\mathbf{k})$ has infinite number of eigenvalues $z_n(\mathbf{k}), n\in \mathbb{Z}_+$, for $\mathbf{k}\in \mathcal{K}(j), \hat{v}\in \mathrm{P}(j)$. The explicit form of $z_n(\mathbf{k})$ and the rate of convergence of the sequence $z_n(\mathbf{k})$ to the bottom of the essential spectrum are found.

Keywords: lattice, Hamiltonian, Schrödinger operator, quasimomentum, width of the continuous spectrum, potential, eigenvalue, eigenfunction.

UDC: 517.946

Received: 13.01.2024
Revised: 13.01.2024
Accepted: 20.03.2024

DOI: 10.26907/0021-3446-2024-12-3-11


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2024, 68:12, 25–32


© Steklov Math. Inst. of RAS, 2025