RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2025 Number 6, Pages 57–72 (Mi ivm10097)

Uniqueness and representation of solutions of the generalized Euler–Poisson–Darboux equation

G. V. Krasnoschekikh, Vit. V. Volchkov

Donetsk State University, 24 Universitetskaya str., Donetsk, 283001 Russia

Abstract: Let $\beta\geq\alpha>-1/2$ and $F$ be an even function of class $C^2(\mathbb{R})$. The paper studies the properties of solutions to the Cauchy problem
\begin{equation*} \frac{\partial^2U}{\partial x^2}+\frac{(2\alpha+1)}{x}\frac{\partial U}{\partial x}= \frac{\partial^2U}{\partial t^2}+\frac{(2\beta+1)}{t} \frac{\partial U}{\partial t}, x>0, t>0, \end{equation*}

\begin{equation*} U(x,0)=F(x), \frac{\partial U}{\partial t}(x,0)=0, x\geq 0 \end{equation*}
related to the structure of the kernel of the operator
$$ \mathcal{A}F(t)=\int\limits_{0}^{\pi}F(\sqrt{r^2+t^2-2rt\cos\theta})\sin^{2\alpha}\theta d\theta $$
for a fixed $r>0$. It is shown that the functions from $\mathrm{Ker} \mathcal{A}$ are uniquely determined by their values on $(0,r)$ and this interval cannot be replaced by the interval $(0,\rho)$ with $\rho<r$. A description of $\mathrm{Ker} \mathcal{A}$ is found in the form of series of normalized Bessel functions $j_\alpha(\lambda x)$, $\lambda\in\mathcal{N}_r$, where $\mathcal{N}_r=\{x>0: j_\alpha(rx)=0 \}$. With the help of these results, new uniqueness theorems for solutions to the indicated Cauchy problem are established, theorems on the representation of solutions satisfying the condition $U(\xi,t)=0$, $\xi\in E$, $t>0$ are obtained, where the set $E$ consists of one positive number or $E$ coincides with the set of positive zeros of the function $j_\alpha$, and a new theorem on two radii is proved.

Keywords: generalized translation, Bessel convolution, spherical means, Cauchy problem.

UDC: 517.5: 517.95

Received: 29.04.2024
Revised: 29.04.2024
Accepted: 18.12.2024

DOI: 10.26907/0021-3446-2025-6-57-72



© Steklov Math. Inst. of RAS, 2025