RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2025 Number 6, Pages 88–93 (Mi ivm10100)

Brief communications

Spectral estimates for the bounds of an operator matrix of order three

T. H. Rasulov, M. Sh. Sharipova

Bukhara State University, 11 M.Ikbol str., Bukhara, 200118 Republic of Uzbekistan

Abstract: In this paper we consider $3 \times 3$ operator matrix ${\mathcal A}_\mu$ with spectral parameter $\mu>0$ related with the Hamiltonian of a system with nonconserved and no more than three particles on a one-dimensional lattice. Essential and discrete spectra of the operator matrix ${\mathcal A}_\mu$ are described. It is established that the operator matrix ${\mathcal A}_\mu$ has at most four simple eigenvalues outside of the essential spectrum. Spectral estimates for the lower and upper bounds of the operator matrix ${\mathcal A}_\mu$ are obtained using cubic numerical range, Gershgorin enclosures and classical perturbation theory.

Keywords: operator matrix, spectral estimate, eigenvalue, cubic numerical range, Gershgorin enclosures, classical perturbation theory.

UDC: 517.984

Received: 13.03.2025
Revised: 13.03.2025
Accepted: 26.03.2025

DOI: 10.26907/0021-3446-2025-6-88-93



© Steklov Math. Inst. of RAS, 2025