RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2025 Number 7, Pages 53–63 (Mi ivm10104)

The Bochner–Martinelli integral operator for real analytic functions

A. M. Kytmanov, S. G. Myslivets

Siberian Federal University, 79 Svobodny Ave., Krasnoyarsk, 660041 Russia

Abstract: Let $D$ be a bounded domain in $\mathbb C^n$ ($n>1$) with a real analytic connected boundary $\partial D=\Gamma$. The Bochner–Martinelli integral (integral operator) $M(f)$ is considered for real analytic functions $f$ on $\Gamma$. It is shown that the integral $M(f)$ is real analytic up to $\Gamma$. Iterations of the Bochner–Martinelli integral $M^k(f)$ are considered. It is proved that they converge to a function holomorphic in $\overline{D}$ at $k\to\infty$. The Bochner–Martinelli transform $M(T)(z)$ is defined for analytical functionals $T$. It is proved that the iterations of $M^k(T)(z)$ converge weakly to a $CR$-functional at $k\to\infty$.

Keywords: Bochner–Martinelli integral, simple layer potential, iteration of integral, Grothendieck duality, analytical functional, real analytical function.

UDC: 517.55

Received: 06.05.2024
Revised: 24.07.2024
Accepted: 26.09.2024

DOI: 10.26907/0021-3446-2025-7-53-63



© Steklov Math. Inst. of RAS, 2025