RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2025 Number 9, Pages 13–24 (Mi ivm10116)

Below-threshold effects for the two particle discrete Schrödinger operator on a lattice

I. N. Bozorovab, Sh. I. Khamidova

a V.I. Romanovsky Institute of Mathematics of the Academy of Sciences of Uzbekistan, 9 University str., Tashkent, 100174 Republic of Uzbekistan
b Kimyo International University in Tashkent, 156 Shota Rustaveli str., Tashkent, 100121 Republic of Uzbekistan

Abstract: We consider the family of Schrödinger operators ${H_{\gamma\lambda}}(K)$, which are associated with the Hamiltonian of a system of two identical bosons on the $d$-dimensional lattice $\mathbb{Z}^d$, where $d\geq 3$, with interactions on each site and between nearest-neighbor sites with strengths $\gamma \in \mathbb{R}^-$ and $\lambda \in \mathbb{R^-}$, respectively. Here, $K \in \mathbb{T}^d$ is a fixed quasi-momentum of the particles. We first partition the $(\gamma,\lambda)-$plane into connected components $\mathcal{S}_{0},$ $\mathcal{S}_{1}$ and $\mathcal{C}_j, j=0,1,2$. Further, we establish below-threshold effects for $H_{\gamma\lambda}(0)$ on the boundaries of the connected components $\partial\mathcal{S}_{0}$ and $\partial\mathcal{C}_j, j=0,2$.

Keywords: integer lattice, Hamiltonian of a two-particle system, discrete Schrödinger operator, essential spectrum, asymptotic, Fredholm determinant, threshold resonance, threshold eigenvalue.

UDC: 517.984

Received: 04.06.2024
Revised: 04.06.2024
Accepted: 26.06.2024

DOI: 10.26907/0021-3446-2025-9-13-24



© Steklov Math. Inst. of RAS, 2025