Abstract:
We study the operad of finite labeled tournaments. We describe the structure of suboperads of this operad generated by simple tournaments. We prove that a suboperad generated by a tournament with two vertices (i.e., the operad of finite linearly ordered sets) is isomorphic to the operad of symmetric groups, and a suboperad generated by a simple tournament with more that two vertices is isomorphic to the quotient operad of the free operad with respect to a certain congruence. We obtain this congruence explicitly.