RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2008 Number 5, Pages 48–54 (Mi ivm1277)

Bases of rearrangement-invariant spaces

Kazaros Kazariana, E. M. Semenovb, S. N. Uksusovb

a Depto de Matematicas, Universidad Autonoma de Madrid, Madrid, Spain
b Chair of Theory of Functions and Geometry, Mathematical Faculty, Voronezh State University

Abstract: We prove that if $E$ is a permutation-invariant space, then a boundedly complete basis exists in $E$, if and only if one of the following conditions holds: 1) $E$ is maximal and $E \ne L_1[0,1]$; 2) a certain (any) orthonormal system of functions from $L_\infty[0,1]$, possessing the properties of the Schauder basis for the space of continuous on $[0,1]$ functions with the norm $L_\infty$, represents a boundedly complete basis in $E$. As a corollary, we state the following assertion: any (certain) orthonormal system of functions from $L_\infty[0,1]$, possessing the properties of the Schauder basis for the space of continuous on $[0,1]$ functions with the norm $L_\infty$, represents a spanning basis in a separable permutation-invariant space $E$, if and only if the adjoint space $E^*$ is separable. We prove that in any separable permutation-invariant space $E$ the Haar system either forms an unconditional basis, or a strongly conditional one. The Haar system represents a strongly conditional basis in a separable permutation-invariant space, if and only if at least one of the Boyd indices of this space is trivial.

Keywords: permutation-invariant spaces, the Haar system, boundedly complete bases, an unconditional basis, a strongly conditional basis, a spanning basis.

UDC: 517.592

Received: 17.04.2007


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2008, 52:5, 41–46

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024